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Variational Analysis in Pressure Coordinates

1. The variational integral and constraint

The idea is to explicitly introduce some form of balance equation as

a constraint on hemispheric or global analyses. In particular, the Flattery

type of analysis ignores the nonlinear relation between wind and geo-

potential found in the gradient wind relation or in the balance equation.

We can do this by means of a variational analysis, following the ideas of

Sasaki (J. Met. Soc. Japan, 1958, vol. 36, No. 3, pp. 1-88) and Stephens

(J. App. Meteor., 1970, vol. 9, pp. 737-739). In this procedure, we change

an initial analysis of geopotential and streamfunction, denoted by and

* ~~~~~f f
to a final analysis , :

f -

The final fields satisfy a dynamic constraint and the spatially integrated

.squares of and P are minimized.

Consider K pressure surfaces at which 4 and ' are given,

k = l,...,K. We can form K-1 "temperatures"

,r, _- [ (rh, i1) 
0 th L R A /pit /PA ] .(n

As the constraint, we take the balance equation

:s+- v V. )~5t 7 (1.2)
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and linearize it to the extent of evaluating the nonlinear term only with

0
the original streamfunction . Thus

Vz '- v f v+' v A° °,

A0 = a a7a a-VV''74°.A, v + I (v0'°) z - IV., V' 
1W~~~~~~ '

(1.3)

7. A is a known quantity,

do not satisfy (1.2).

The variational problem is

the area integral of

--, t _r ( ) t
has p

measuring the extent to which o and O

set up now as the problem of minimizing

E 3h a Tk )
hka

+ -d 1 01')z

(1.4)

In this expression

/A = ~/3, ,., g) ..

p t('6 If') I is

a , p and f

the corresponding

Tk -k- ~ : ,), and the variables e = d ( s )

and Or = 1ad jf are positive analysis weights.

a Lagrange multiplier (as yet unknown). The weights

are set inversely proportional to the assumed error in

original fields

_ t

-( r'oAC ( ST) v

# £ {& ~~(T#) -2
(1.5)

40-z
1(6 4'

+ 2 E:pIVt4 -CV- L _ V ,4vZ * V-A '4l .
h 2~~~~~~~~~~~~~"

-r
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For example, a highly accurate T° field corresponds to a small ST°, a

large 8, and a tendency to keep TO small in the process of minimizing

(1.4).

Before passing on to the variational details, it can be pointed out

that the brutal step of ignoring in the vector A of (1.3)--which

avoids the usual balance equation ellipticity problem--can be softened

somewhat if desired by iterating the entire analysis cycle one or more

times with P and ' replaced by successive values of 4 and 1t

2. Variational algebra

/
Let 6 denote changes in . The corresponding change, in I

is twice5 ~~-.cIlaT J Iv
:~~~~ :

= [-6 (t,)+ .{t ;. +VLz s- ve,7

The divergence term integrates out on the sphere. On the Northern Hemi-

sphere it vanishes if, at the equator,

I) p_ atld £ ' o (2.1a)

or,

II) 'j Al =. o a, l ($4')/ 0 .

An extremum with respect to 6 Al therefore requires that

(ea + g2 -t) A/ - 0 -e +t * .VZ _!t 2 a /~ 1zO

(2.lb)

(2.2a)

O
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Now let 6 denote changes in # , k = 2,...,K. Calculations similar

to those above lead to

For k = 2,...,K-1:

-P A 0t I -I +(MtW z d. (2.2b)

For k = K:

K : /
1

14t x ~~~~~~~~~~~~~(2.2c)
with boundary conditions equivalent to (2.1) on k and 64r 

I
Finally, let 6 denote a variation in . The corresponding

variation of I is twice

: -AM [v t . f v7eJ]S

The divergence term disappears on integration for the globe. If we treat

only the Northern Hemisphere, its vanishing requires at the equator,

I) 2 k / ° -0 : (2.3a)

or,

~II) A e 0(2,3b)

leaving the equation

ah A V~ + fVfC -o , (2.4)
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Equations (2.2a), (2.2b), (2.2c), (2.4) and the balance equation (1.3)

I
constitute the system of 3K equations to determine , , and 

at k = 1,...,K given a knowledge of d , , t and V'iA.

When the Northern Hemisphere alone is considered, the set of

equatorial boundary conditions in (2.lb) and in (2.3b) are most suitable,

since ~ as an odd function of latitude and i as an even function

of latitude is most realistic. In this case p is an even function

also as far as the boundary condition (2.1) is concerned. For simplicity

and definiteness we can in the hemispheric case consider

~,p f a , , . S as even functions of latitude, and
(2.5)

as an odd function.

The balance equation (1.3) is consistent with these and poses no further

restriction (except that the hemispheric integral of V'A vanish).

Equations (2.2a)-(2.2c), when integrated over the hemisphere, place

constraints on hemispheric integrals of k :

ff i (2.6)

Hemispheric integration of (2.4) shows that the line integral

Ir.

J t k ~~~~~~al C(2.7)

0 9:-

I
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If h were independent of longitude at the equator, this would be

equivalent to constraining the horizontally averaged vorticity to be

preserved: sr

Jf v'*' JAW.,O ~

3. Separation of variables

A considerable step toward making solution of the set (1.3), (2.2a)-

(2.2c), and (2.4) tractable is to simplify the distribution of analysis

weights. We shall assume

n{MS, s ye *tZa Pk) (3.1)

+,{sX~ij_ N 8t¢ t' t taV
where the horizontal functions are nondimensional and positive.

To arrive at t-isspe ificat dor,-define,-

k= 1: , 
a~~a.

(3.2)

PkJ,, - FJ,,-,Ik = 2,...,K: _ - , e

hw- )k? (6A< )

where the numerators express a weighting with the pressure thickness

associated with the wind and temperature values ( p = press(mb) - 1000 ).
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Given these three-dimensional fields we choose t and J to be the

horizontal averages of (3.2), and define 1 and by

t {b) = K i t YA /$;t) ,I1*

(3.3)

For ( , we first define a field

= (j-t'~ /(~:d)& - tt ; ( ( } (3.4a)

where C(tj) is the analysis error in at k = 1. d is

obtained then by

= spatial average of ( ~/i ) (3.4b)

(&r) and (r) vary by a factor of about 10 from data-rich areas to

the data-poor oceanic areas which occupy most of the area. r and 
: he~~~~~~ad

will therefore vary from a minimum of (say) 0.2 over the oceans to 2 or

3 over the continents, but will each have a horizontal average of one.

If O in (3.4a) were equated to , we would have 46 = R to/P,,
is also equivalent to (RT/p) times S? (sea-level). For p1 = 1

and P2 = .85, a ST2 of 0.6 deg corresponds to 1 = 26.6 m 2 sec -2 and

6p(sea level) = 0.34 mb. We may therefore expect approximate equality of

( with , since 0.6 deg and .34 mb are both realisticifor go6di aili-fs-

regions.

It is convenient to change to nondimensional variables and operators

at this point, using the radius of the earth (a) and (1/2Q) (Q = the earth's

angular velocity) as the length and time units. To be specific we set
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Nondimensional Dimensional

+ik

(3.5)

''k

V

= - . /L

= PA An, / 

The square root

matrix 6

:s of k are i

in (3.6c) below.

ntroduced to produce symmetry 6f the

Equation (1.3) becomes

q ti -2.4 be o m e -s(a /z-t ) ADSA,

. Equation (2.4) becomes

v ,'It7 k . V. silt a V, = o.
(3.6b)

The K equations (2.2a), (2.2b), and (2.2c) become

v a (3.6c)

- Ak
(3.6a)

= ' - FIA /-P-a �t

K

+ P z
1=1

0, 9&74 1
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-- is the symmetric tri-diagonal matrix

a 0 0
Al O4., 0

JO - #_3 <3 _a&

- 4

0

0

V

8~~-:
(3.7)

in which the diagonaI terms are

F~ ~~ Lq2' -1)]/

I

(3.8a)

and the off-diagonal terms are 

and the off-diagonal terms are:

0,
It = ,'-,, Z IC (3. k t8 l b)k re, )

17 has K positive eigenvalues ~J

E B52, e/ 
k eV i:

2:~ee' &
12 it~

ha

and orthogonal eigenvectors

= I ej.
J J 7

i ek
(3.9)

&i.

AIt can be 'shown
K,_1f :t` h-

where

go- 2,, K-,

e%: J

that

z = 4.zSIZ ,4 f4-4..,]

Cot

-A

(3.8b)

- - Ijqs ei (Mt 

_ [I ,'' ( k :r 1 k.,, , ),7 / k
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We expand in these eigenvectors:

: -. j Vji kV =. .)- - (3.10a)
. :

V- "4. Si R. F.( +k} Ok i < } N ) J NJ J v 4 J J) i (3.10b)

(3.11c)

(jar V {/I ''' V ;kR I - , t.11b)

These are the equations which must be solved in the horizontal coordinates.

Variable coefficients on the left side consist of sin6 , , and f 

f being a constant for each j.

Table I shows the values of and ek which exist for the case in

which the K pressure levels are those of the 12 standard pressure levels

p = 1., 0.85, 0.7, 0.5, 0.4, 0.3, 0.25, 0.2, 0.15, 0.1, 0.07, and 0.05,

with uniform values at all k of (T) 2 = (0.6 deg)2 and (Sv)2 = (2.5 m sec-1),

and with $e equal to 26 m2sec 2. (These values are probably typical of

~~analysis errors in data-rich regions.

anlyi berror in dosanta-oriech reios.



* :0 p0u :ev.ls.: :.2

Table I. Values of Xj and ek for 12 standard pressure levels.(T) 2 = (06 deg)2, (6v)2 = (2.5 m sec-1)2

and (a1)2 = (26 m2sec-2)2. Computed with double precision arithmetic on an IBM 360/195, but

ek values
j are truncated for brevity.

1

107.83

el
e2

e3 J

e5 .
e 6.

ell elJ
e12 ;

.020

.057

.104

.179

.199

.240

.234

.285

.356

.412

.389

.522

7

4593.9

el.0

eJ
e3

ej
e6Jj
e7J
e 8 ;

9 j
el0

ell,
el2 j12 j

.057

.135

.090
-. 241
-.058
.254

.146

-.130
-.317
.562

-.599

.177

2

368.76

.048

.135

.238

.367

.360

.346

.276

.239

.137

-.099
-.277

-.548

8

6600.7

.081

.174

.022

-. 398
.256

.392

-.148

-.582

.445

-.152
.061

-.012

3

925.37

.078

.213

.344

.396

.256

.032

-.105
-.275
-.441
-.360
-.003
.443

9

8860.6

.136

.261

-.130
-.398
.658

-.314

-.213
.370

-.153
.031

-.007

.001

4

1705.2

.099

.262

.372

.209

-.046
-.321
-.324
-.265
.038

.521

.253

-.349

10

10911.7

.343

.586

-.643
.286

-.179

.022

.080

.066

.020

-.003

.514 D-3

-.559 D-4

5

2716.9

.135

.343

.397

-.121
-.339
-.277
-.046
.257

.444

-.247
-.357
.215

11

13948.9

.008

.010

-.022
.063

-.185
.517

-.748
.358

-.075
.008

-.001

.849 D-4 -.867 D-ll

6

3798.9p 

1.00
.85

.70

.50

.40

.30

.25

.20

.15

.10

.07

.05

p x 

1.00
.85

.70

.50

.40

.30

.25

.20

.15

.10

.07

.05

.126

.308

.270
-.398
-.283
.239

.309

.158
-. 366
-. 134

.467
- .176

I
!~

12

32308.1

.895

-.439
.075

-.005
.616

-.629
.124

-.172
.130

-.541
.251

D-3
D-4
D-4
D-5
D-6
D-8
D-9
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[The determinant of Bkg is readily shown to equal

de - .t R **2. 5

Setting i equal to zero--equivalent to ignoring a t#i') in the

integrand (1.4)--would therefore introduce one zero value for 2J .

This solution in (3.11) has zero Rj and Sj--showing that all adjustment

in (3.11a) for this degenerate mode occurs in the geopotential field Hi.

The corresponding eigenvalue ek is equal to ( / F ) 3
')in Table I evidently acts as the square of a vertical wave

number, since the number of sign changes in each eigenvector increases

steadily from zero to eleven as Ij increases monotonically with j.

[The last eigenvector is unique in its rapid fall off in magnitude for

k > 1. To the extent that it resembles a delta function St ,it

implies that equations (3.11) could almost be written directly for ,

¢ ' Jk and Ak at level k = 1, with Iy ; . This isolation

seems undesirable. In this example 6Ai was chosen to

correspond to a somewhat optimistic sea-level pressure error of only 1/3 mb.

Larger values of b4' (smaller W ) will reduce the semi-isolation of

layer k = 1 that is present in Table I, and should be considered carefully.]

The set of equations (3.11) is easily manipulated into the following

relation

11 fVS). .1 1 J- 11- ay VR R S) I (3-12)J , , .,J 
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showing that the horizontally integrated modal squared amplitude is

determined by the horizontal average of RF. The equivalent statement

for the original variables e and is best derived from (1.3), (2.2a),

(2.2b), (2.2c), and (2.4). This can be done without the separation

assumption (3.1) for the weights . , , . (2.4) is multiplied by

_ ! and (1.3) is multiplied by k to produce, for each k, the relation

o ( V .)i) -tM ' V (3.13)

+ t7+4(+ V -r va + r*'v*'r V**+ ?7k(3-13)

If H- temporarily denotes C ,'< , equations (2.2a), (2.2b) and (2.2c)

can be manipulated into the form

-V vZn, - .' 1A t.',,)-. ,,,

_ ,., ,,F - _ {E1{~ )- C~s ) ; } -I- #.an V .10 - *K(K 1I J

When these are introduced into (3.13) and the result summed over k, we obtain

he~~~~~V A::,

K~~~~

- ZD4VexuA 2 (3.14)
AMA~~~

where indicates a collection of 9. terms which disappear on

horizontal integration. This equation, like its specialized modal counter-
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part (3.12), shows how the Lagrange multiplier p implicitly, through

0
its organization with respect to VA , acts to determine the resulting

minimum integrated value of the original integrand (1.4).

4. Response to a localized distribution of A

The nature of the solutions of (3.10) and (3.11) can be investigated

under certain simplified conditions. The most fruitful simplification is

to treat sine as a constant in (3.11). At the same time, let us for

convenience define

AJ o J 

. K-sze Rg , (4.1)

J ,,

(3.11) then becomes

v Vr~ ~ 4...~~~~ 0j t -°(4.2)V . -t -OL.o

We will use these, in combination with (3.10), to discuss two effects.

Effects of irregularities in and are discussed in section 5. In

this section we determine the response to a localized "point source" of
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the forcing function VA . We do this under the further assumption

that / {_ - I . Equations (4.2) then reduce to

.91- - _

VIt. -OL 
.9 J J 

(4.3)

which combine into

v'2~~~v7iL. tC
J J

We see already that the

a characteristic length L..

j ,.J.

I ._F
P ' J , (4.4)

equation for each j has associated with it

In dimensional units this is

4.

- t.0 f.51 *~ vJ
For sin 9 =0.707, the eigenvalues of Table I produce values of Lj

ranging from L12 = 50 km to L1 = 868 km. In other words, the highly

oscillatory vertical structure represented by el in Table I, if

excited at a particular horizontal location (xo,yo), will disappear

rapidly with distance horizontally from (xo,yo). The smooth vertical

field e in Table I, however, will extend considerably further in

the horizontal. This arrangement of response seems desirable and

suggests that the form for I in (1.4) is satisfactory.
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We consider now the circulatory symmetric case (with x denoting the

radial coordinate) produced by

O F :c4as[- F. constantJ j (4.5)

The differential equation is4; 3^! d + / J Jd
and the solution that maintains continuity of I; and cLJu/t

at 'i~O , and which disappears as 4-p 0 , is

OV <.I: , *_ 1 t U v{)] j/°
(4.6a)

where

J. -o , (o r . o "., :
(4.6b)

W:j(#)z. di.r{4)Ko(d.)

Io0, I, K0 and K1 are the modified Bessel functions described on pages

374-379 of Abramowitz and Stegun (1964). "U is negative with a

maximum magnitude of 1 at 4 =4o ' Ho - .' WJ- is positive. Its

maximum value (reached at N=A/o ) increases from 0 to 0.5 as C'4*

varies from O to O . The general character of the solution (4.6a)

is a simple bell-shaped curve, having a discontinuity in z J2

/Handbook of Mathematical Functions. National Bureau of Standards, June 1964.
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at . /

Let us define the original forcing function as having the special

form

°A constant V4 I ~~~~~~~~~~(4.7)

center

for f C o at one level, k = Q, zero everywhere at all other levels

and also zero at level Z for A . If + v v 

has the order of magnitude (velocity/horizontal scale length)2 and it

will tend to be negative in cyclonic flow, positive in anticyclonic flow.

We might expect (4.7) to be as large as -(.25)2 at the tropopause in a

major middle-latitude trough region, and perhaps even closer to one in

magnitude in sharp curved jets.

From (3.10b) and (3.6a) we then find that

(; {+ P 410 a A,(4.8)

F- 4E(+44eJt Jo 4J

/For +~ ~ , %. -~ ( /74o) ZoL), suggesting an alternate

formulation in which F. .is kept fixed, but 46 is set equal

to zero:

}~ zIF,:H <g^f} d C$d

This has a logarithmic singularity at 0 :4 -- 0 . This is a true

"point source," but seems less satisfactory for a quantitative interpretation.

)I
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where our choice of the single level at which XA is not zero

prescribes the value of Q. This is consistent with (4.5).

As measures of the response to this localized forcing, we first

consider the change in geostrophic vorticity and the change in actual

vorticity, both nondimensionalized through a division by f. We first find,

at level k, thatA, ekd.j' '
(V2 is dimensional on the left side, nondimensional on the right side.)

Using (4.3), (4.6), and (4.8), we obtain

_ 9 t ( 4 voj ( 8 ) ( : t /E,, t e',, , C4/. v
~~~~~~~ .i" . ai _ * 

+ 0 e e~~~~~~~~~~~~~~~~4
+L JAW j~~~~~~~~~~9)

I ~~~~~ 4 It~~~~~'f' It~.. ,.,, Jat VJ,(@-F 1 * ( : V- X | M.t saf W.)

in which the first term in the parenthetical expression is used for % (EEo}

O
and the second for #?'. The subscript "center" on a. A is a

reminder that it is the constant value assumed for 4 C "S at level Z.

These expressions are most easily interpreted if we fix attention on

a particular case--a small isolated "cyclonic" region (#c4r ) in which

1VAX is negative. From (1.2) we can imagine this as resulting from

~ < not being large enough (algebraically) or from H being too

large (algebraically) to balance the nonlinear 1* terms in (1.2).



Figure 1.

Distribution
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temperature

changes
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(250 mb) in
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.70

.°0

.10

.07

o.0

.70

.31

°7£

Aj~iO.'4TMr:S GEOST 908OR G 

1 8 8 7 7 6 6 5 4 3

2 17 17 16 15 14 12 10 9 7

3 38 37 35 32 28 24 20 16 13 9

4- 130 127 117 103 86 63 51 37 · 25 16

5 387 375 338 279 205 134 80 ' 42 18 4

6 1549 .1516 1401 .11435 630 165 L_.5 -...8 --9.. -86.

7 3 04 37438 4219 514-7 17 7 -1681 -930 -542 -334 -217

8 1666 1629 '1503 1230 691 204 7 -65 -86 -85

9 525 509 :462 386 292 201 129 77 41 17

10 157 154 145 131 113 95 77 61 47 35

11 68 67 65 61 56 51 45 39 33 28

12 34 34 33 32 31 '29 27' 25 22 20

(k ~ ~ J , I , * 
0 /Oo ,ZO 3o0 '10 q0

1 -14 =1.3- '-4[ 713 '13 -12 -12 -11 -11 -lo

2 -28 -28 728 -27 -26 '-25 -24 -23 -22 -21

3 -52 -52 51 50 -48 -46 -44. -42 -39 -37

4 -125 -124 -121 -117 -lIZ -106 -99 -92 -85 7&

5 -23 -233' -225:213 2
"
i99 -182 -165 -1.49 -134 -120

6 -575 -564 -534. -4858 25 -363 -308 -262 -224 -192

7-1 21 -119 I 7-120 -982" -I9 -549 -419 -334 -273 229

8 -649 -638 '-605'-553 -488 -421 -361 -310 -267 232

9 -364 -361J -3.51 -335 -314 -291 -268 -245 -222 202

10 -218 -217 -214 -209 -202 -194 -135 -176 -166 157

11 -158 -157 -156 -154 -151 -147 -143 -138 -133

12 -124. -124 -124 -122 -121 -119 -117 -114 -111 108~~~~~~~~~~~~~~~-70

a 8 7 7 6 6 5 4'. 3 2

2 17 17 16 15 .14 12 10 9 7 8

3 38 37 35 32 28 24 20 16 13 9

4 1[30 127 117 103 86 68 51 37 25 16

5 387 325 338 279 205 134 80 4-2 18 4

6 1549 1516 1401 1145 630 165 -15 -78 -91 -86

-15 81 -930 -54-2-3--1 
7-63 95 -4251 -5780 ~-4852 -32 2-61 93 -52 -334 -217

8 1666 1629 1503 1230 691 204 7 -65 -86 -85

9 525 509 462 386 292 201 129 77 A1 17

10 517 154 145 131 113 95 77 61 47 35

1i 68 67 65, 61 56 51 45 39 33 28

12 34 3~4 33 32' 31 29' 27 25 22 20

L I * I * I *~~~~~lt

2 -3 -3 -3 -2 -2

3 -4 -4 -4 -4. -3

4 -7 -7 -7 -6 -6

5 -16 -16 -15 -14 -13

6 -40 -39 -36 -32 -26

7 -121 -118 -109' -92 -62

8 87 85 75 62 41

9 33 32 30 25 20

10 12 12 11 10 9

11 5 5 5. 5 4

12 3 3 3 3 3

I

-2 - ' -2 -2

-3 -3 -3 -3 -2

-6 -5 -5 -4- -4

11 -10 -8 -7 -6

21 -16 -13 -10 -8

34 -20 -13 -9 -6

19 a 3 0 3

15 11 7 5 3

8 6 '5 4

4 4 3 3 2

2 2 2 2

D ')100 T IES TMP. CHG



-19-

Considering first the outer region d> , we see from (4.9) that

the two vorticity changes are equal. In this way the presumed satisfaction

of (1.2) at N>o is maintained. At the forcing level itself (k = 2),

the fact that W and ej .eJ are both positive shows that ~z'

and ~ are both decreased in this outer region. In other words, the

original "deficit" of in the central region at level g is dispersed

laterally outward, but without destroying the balance present originally

in the outer region.

At the interface O , V .j' is continuous, but V246 has a

discontinuity. In the central region, again at level k = ., is

increased in this example, since both VAa and U are negative.

~1~ is decreased (I + U being positive). Thus 7 and 7r

both participate in correcting the original imbalance in the central region

at level 2. In the central region at levels k different from Q, the sum

( ' -~ + ~7 ) is zero because EC& t.. vanishes for k F Z.

In a similar way, we can derive the relation

(4') ~ -) 2. ~tY,.
4 .1 (4.10)

and also use this to evaluate, Tok Z t(+k )'O a
These functions have been computed using the same distribution of

,+ i p and used for Table I, and with sin 9 = 0.707,

en- : (,oI /&) and ( v' i /- ) = -1. The results for 2 = 7
(250 mbs) are shown in figure 1. Parts (A) and (B) of figure 1 verify
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the deductions discussed above. (The printed values for / 

at 4 o in part (A) are the averages of the inner:,and outer

solutions at d '-o .) The lateral dispersion of negative 47

at 2 = 7 from the inner to the outer region is clear. As a counterpart

to this, we see that V ( in the central region at . = 7 is negative,

and the original "excess"i of V at 4 ¢p o , 'Q = 7, is dispersed

vertically in this region, since V iP is positive at k # 7 for c - d.

The distribution of height change tj q. / in part (C) of

figure 1 is readily understood from the distribution of v% i, It

corresponds to a fall in height centered at k = 7, x = 0. This leads of

course to the temperature decreases shown in part (D) at k < L and

temperature increases at k > k . (Recall that T T (4 k-k)

so that T - (7 4 -I ) .)

7 7 0
The values of (S1)2 = (26 m 2 sec-2 )2, (6T)2 = (0.6 deg)2 and

(6v)2 = (2.5 m/sec)2 have in this case produced a ratio of geostrophic

vorticity change to vorticity change of

r I =v I ' "gr OP, a x / t 6 ) @/ (4.11)

at x = 0, k = 2 = 7. In doing so we have minimized the area integral of

We can therefore expect Fr to increase if V is increased (6v decreased)

and if ( and i are decreased (ST and 61 increased).
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This dependence is complicated. In order to provide some numerical

insight into it, a series of computations have been made in which the

ratio cS~/ST is kept fixed at (26/.6) m2sec-deg - 1, the uniformity of ST

and Sv with k is retained, but both sin8 and the ratio (6T/Sv) have been

varied. The results can be condensed into an approximate formula:

r~ f;o63'R gT'I a f: r 3 (4.12)

( 4%o has been kept fixed at 200 km in this procedure.) V24 and 

will therefore participate equally in restoring the balance equation at

x = 0, p = .25 in this special case, when

6T(deg)
ldg = 0.48786 sin0 (4.13)

Sv(m sec- 1)

Although determined for a special case, this case of localized imbalance

at p = .25 is realistic enough that (4.12) and (4.13) may be useful in

adjusting the effects of different ST and 6v.

~?.
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5. Effect of a horizontal variation in analysis weights

The,.ifinctions 1 and represent the horizontal variation of

( 9/~~ C and t sr9/ /T , with a mean value of one. They will

therefore be less than one over "oceanic regions and greater than one

over the data-rich continents and, to a considerable extent, will be

quite similar to one another: ' / . Using Cartesian coordinates

x,y, we can examine most simply the effect of this horizontal variation

by considering the step function distribution

-: / # : (y>o) (Region I)
(5.1)

;r-' (4o) (Region II)

This is introduced into equations (4.1) together with a forcing function

JF S.J~ sh~~~~~ift~~~ ftt(5.2)

4, F '£and Gj are constants. 2 is a phase angle, and m and p are

positive wave numbers.

The equations in both regions are the same:

C | 44a Act A (5.3)

: J

a'

A-P) -W o t (5.4)

(it t _ Ar =
(d~9



-24-

The internal boundary condil

Dh/ax, and )/ ,

- 1 _ _ 

tions at x = 0 are continuity

Lnese transla Lte into

:4r

AV
if~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I dS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 f sN"1
\ fd. 1

J ~~r

as E

I

O . Also, the solutions

ij1 &
1 V I)

The solution for ,44

N

kb n a i

must be bounded at infinity:

= finite.

is simply the particular solution

AS -_ _ _ _ _ _ _ _ ~ ~ ~ ~ 4 f S 

pz e ,,m .2 t ...-
t~~~~~

since the boundary conditions (5.5a) and (5.5b) rule out t

solution exp +(± .e E )x for u. The solution for v is

:~~~~~~~~~~~~~~~~

Ar --
: (wS tt)(^t~~~~~~~t; ) L k~~~~~AN

with the + sign taken in region II (x < 0) and the 

(5.6a)

he homogeneous

+ (5.6b)e J (5.6b)

sign taken in region I

0). (We consider

in h, s,

(5.5a)

(5.5b)

-

0

IV

(x > m > 0.)
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The sin(py ti ) part of u and v is the solution for any completely

uniform value of I .The introduction of the discontinuity (5.1) into

and therefore does not change the geopotential field hj./

But it does change the "streamfunction" field by an amount

/, __ _ _ _ _ am0 _ | 'S ,,7/s~etf 4' -#+ti.5tJ X (5.7)
Jr r

This produces a discontinuity in the y-component of velocity across the

line x = 0, i.e., a vortex sheet. The discontinuity vanishes when the

phase S equals - U'/t , i.e., when the forcing function sin( * +*S )

has its maximum or minimum at x = 0. The discontinuity in t does not

change the vorticity field away from the line x = 0, since _ °

for x 0. The strength of this vortex sheet is measured by the discontinuity

in meridional velocity

41V^ ( 4d¢) t0ve[-A) tZu ( k a, / ., (5.8)

/ h. does not change in this case only because V A ' =°. For more

general variations in , hj will differ from its value for t J/ .

D~~~~~~~~~~~~~~~
p 
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Equation (5.2) is consistent with the following spatial distribution

O
of tA 

:

(5.9)

For simplicity we set 41 equal to a linear increase from zero at p = 1

to Q at p = .25 and a linear decrease from Qmax at p = .25 to zero

again at p = 0. Gj in (5.7) then equals /d) e~. ,.

and (5.8) can be shown to equal

,f= - ssŽ)f )

A value of (0.25)2 for Q max represents a moderately intense wave system.
For definiteness we locate x = 0 at the west coast of a continent and,

in agreement with the discussion of and ( in section 3, we choose

-- Z : , -- 4 . By selecting - O we position the wave in

V.A to correspond to a "cyclonic" region of negative VA

centered one-quarter wavelength off the coast. For the nondimensional

wave numbers p and q, we assign reasonable values of

P ~~27ra4i
east-west wavelength 4

M 2-7am = = 2w
north-south wavelength

corresponding to values of a/2 for the east-west wavelength and a for the

north-south wavelength.
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Values of -AV for the above parameter values, for sine =0.707, and

the same a, 0 o o used for Table I, are shown in Table II (at sin(m y)= 1).

The discontinuity dYV is equal to I t( -r )/ r times the continuous

meridional velocity V at x = 0 due to the sin(r q#;) term in (5.6b). It

is therefore not large enough to change the sign of the meridional velocity

from the left side to the right side of the line x = 0 in this example.

This suggests that it will be practical to use horizontal distributions of

fI and (/ in (3.6) or (3.11) which change suddenly--for example in

oceanic areas where an overall level of Vt , 0, is punctuated by small

regions of A. It '4 centered on scattered island and ship stations.

The predominant positive sign of A in Table II can be deduced from

equation (3.11) and the results of section 4. In the given area, Q-A

is zero at x = 0 and negative to the west (x < 0). For uniform and j

we therefore expect a center of positive streamfunction change west of x = 0

and a negative center to the east of x = 0, giving a negative value of

Q / S at x= 0. Referring to equation (3.11b),

:(3.,b)

we can imagine the introduction of a non-uniform 7 as resulting in an

approximate equation: *

4V 9s. Neow) f R. ' Q* vv PR $-' /,1/d
.1 

The right side of this equation would be positive at x = 0 for the case

shown in Table II.
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Values of AV at m y = i/2. This is the discontinuity in

meridional velocity produced at a west coast (x = 0) for a

realistic forcing function V.°A 4= 9 @ I so Ac/

The continuous meridional velocity V at x = 0 is also

tabulated.

AV (m sec- 1)

- 0.272

0.304

0.786

1.253

1.435

1.617

1.766

0.897

0.181

- 0.332

- 0.528

- 0.608

V (m sec- 1)

- .166

0.186

0.480

0.766

0.877

0.988

1.079

0.548

0.111

- 0.203

- 0.323

- 0.372

Table II.

p

1.00

0.85

0.70

0.50

0.40

0.30

0.25

0.20

0.15

0.10

0.07

0.05

Q

0.0000

0.0125

0.0250

0.0417

0.0500

0.0583

0.0625

0.0500

0.0375

0.0250

0.0175

0.0125

i:.1 m
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The following argument illustrates the minimization principle acting here.I ~~/
In the figure, let max and min denote the circulation change patternmax min

for = 4 . The superposition of (5.7) from non-uniform Y acts

to reduce [ ) over the continental area (where ' is large) and

increase it over the oceanic area (where 7 J is small).

ocean

small I

f)

continent

large t

4:,0

6. Iterative solution methods

The problem is to get solutions for Hj, Sj and Rj in equations (3.11)

in which Ij j3I F are known functions and is a known positive

constant. In this section we first consider some simple iterative

techniques for the simple Cartesian case of t'_ = I and sine = constant,

i.e., equations (4.2) with t t =f I . We shall see in this section that

conventional iteration methods will probably not be satisfactory, even for

this simplified problem. (Stephens also experienced difficulty in this

respect; see page 737 of his 1970 paper in J. Applied Meteor.),

tf
* -4

(16
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W
In order to explore iterative methods most expeditiously, we shall

consider that "simultaneous relaxation" is performed. That is to say, if

we have an equation 2 v+ i

for the W+I iteration of variable a given a known value of the -'

iteration of variable b, we obtain 4, ! exactly before proceeding to

the next iteration. (It seems reasonable that if conventional point-by-

point relaxation schemes were used on a horizontal grid, they would converge

even slower than this hypothetical simultaneous procedure.) This enables

us to replace the operator V2 by a simple factor, -n2, (n is roughly

equivalent to the spherical harmonic wave number). We. of course now have

to require convergence for all n for each aj.

Equations (4.2) then reduce to

__~ .At i + . = -Fj ,
A<L -0, (6.1)

-. AS2> e6 2 .L. =0O 
J:

The solution is

£.= R/. 5.0,
J J J

ALJ s ~ H 5 /Xe{^ztt At(6.2)

JJ: I or;2F z2
J.
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This solution is of course not accessible to us in solving (4.2), but we

can simplify our algebra here by working instead with the "error"

(1.~~~ A. t Jo 64 A ijtri<

These lead to the homogeneous error equations

- h + s =0, (6.3a)

s + r = 0, (6.3b)

- n2r + a2h = 0. (6.3c)

Iteration scheme I.

M4 6 1 - a (6.4a)

,, = - A, W.4,

These lead to the convergence process -- t>: -:~ /.,~' (6.4b)
for h, r, and s. Convergence is thereby achieved for short waves

2

M~~~~ 81@> - j* Stw:2@(6.4c)

Since X. varies from 100 to 32000, this scheme is unsatisfactory by itself.
J
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By reversing the equations, we obtain

Iteration scheme II

which understandably gives the reverse of (6.4b):

'Z V+ sst^t O 

(6.5a)

(6.5b)

This converges for long waves

Jzn~~~~~ < Xj SlE(6.5c)

Neither this nor (6.4c) is satisfactory for all n.

Iteration scheme III

This is a mixture of I and II;

h* = sl, n2r* = a2h*, s* = - r*,

(6.6a)
s** = h, r** = - s**, a2 h** = n2r * * ,

followed by the combination

,t I i 4 1 -- 2+= + O,,
WO~~~~~~~~~~~ >> ~ # / {{6 )(6.6b)

.4, ' t' l A-j,4 W' O'!-O A,4*'
where a and ~ are numbers between zero and 1. These produce the iteration

results

A L _ " {I -- A, .eL

I.fI
A.

Oa VW I --

_ (I.-)J,

(6.6c)

, l*.
,*' *: 
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The iteration eigenvalue V for this process satisfies the quadratic

wt + soIluin °-'q ' ; 7-
with solutions q:

_--+ q. '¥b
N -~~~ (6.6d)

N stands here for n2 /12, a quantity which effectively varies from almost

zero to a very large number.

For fixed a and 8 the radicand has a minimum with respect to N at

N2 = 8I(l-a), this minimum value being 4a(1-0). The square root is

therefore real. Since (l-a)N + O/N is positive, the convergence criteri

four ;1 at+ N < I
for all N. For small N.

= - A
Al

on is

ri s f 0(N )

For large N,

The requi

choose 6

,.~ = (,-,J4, ~ ,ri,2 . 0 (,v-).( l-II)N

irement that B be small and that (l-a) be small suggests that we

= 1-a. This gives the simpler condition

- ' :f" - :>;w : I $ {t v) 2 t Rd - t ~~~~~(6.f6e)

where

I / ., > I

^o- ,,~~ ( ,,Y'

I

""�-Ow
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The large range in MA/1t/eJ means that Z can be very large, and the

only hope for satisfying (6.6e) is to have a close to 1. However, Umax

equals one for a=1 and / , /9CC at a=l equals l-Z, which is less than

zero, Therefore Vmax will be greater than one for a slightly less than one.

This scheme will not work.

An only slightly more successful scheme is the following.

Iteration scheme IV

hV = sV

r* = (a2/n2)h /

s* = - rV

r** = - si/

h* = (n2/,2)rl/

s** = h* = (n2/a2)rat

followed by

~~~~4. ~ ~ ~ 4

This leads to the iteration scheme

where N again equals n2/a2, The convergence criterion is

a

:~ ~ e N
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For a fixed a, N must lie between

fit I+ 20L -;d2

2a
and

N. m2 : ______________ _______

a (t-a.) ~

in order to have convergence. The values of Nl and N are as follows

Ec- being a small quantity:
e being a small quantity:

N1

a) d- G

N2

1- Vy4 . ...

~b) '0 ~~b) A-.'I

c) e Z C -4 I-V

3+ ? J': .f 40.3

- -I- a _ 3+¥6 ---C. Xz T

N is equal to Mz(A $.V'W ) œv s S/"% '

For j = 1 and 12 we have then, with nmin = 1, the following ranges for N:

j = 1 .02 4 N < 

j = 12 .000067 $AN $J

Both j = 1 and j = 12 willYhave their lower limit N1 satisfied only by small

a (a = e) but the upper limit N2 will not be satisfied. This method is

therefore unsatisfactory also.

An iterative method to solve even the simplified system (6.1) does not

seem possible. We therefore turn to a more direct method.

3-~,,~ -,, Iol?
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7. Use of spherical harmonics

We consider now the complete system (3.11), dropping the j subscripts

for simplicity:

v ,i- r, St v$ -F,

V;zR .t a ai4 -- o.

I 
We first rewrite this to put all variable j and effects on the right

side:

VH -g, I~ti VS - F (7.1)) (7.1)

v S · I7, stir 4 R - V. 0-*9 V5
:S t ~'~#(7.2)

17R A- 2H - {-s')H,
(7.3)

The iteration process will consist of using the previous iterates S and

H (initially zero) for the right sides of (7.2) and (7.3), and determining

I , S and R from the left side of (7.1)-(7.3). [The process for

the special case I explored in section 6 would not be iterative,

and therefore not subject to those convergence problems.]

We use the normalized spherical harmonics to expand these fields, for

example

. = (7.4)

/~
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.zVs+ t 1VtI

This is done for the three unknowns H N S! , on the left sides

o 0
of (7.1)-(7.3). (S and Ro are defined to be zero.) Let us also consider

that the right sides of (7.1)-(7.3) have also been expanded in spherical

harmonics, perhaps by a transform technique, for a given V iteration.

The operator V2 on (7.4) produces the well-known result

,, H - _: A M.g'+f)H AL ,
,~~~~~

The operator V s, stl .V however becomes

,V. ~ vi's TV (S-ec)aSlq 

so that

-fA~ ~ ~ ::V ~of ,I
(We have introduced the conventional notation x = sine at this point.)

_

Using the relations (8.5.3), (8.5.4) and (8.14.13) in Abramowitz and Stegun,

we can show that

,/,+ 1) Y 4'- ',1') Ye 't)a/ '
-~ a~-2 ~ ~--' ~7(7.5)

in which

As J [I 'Of J _a.(7.6)

0. 0 0
(Note that ao is not needed, since So and Ro are zero.)

O ~~~~~>,
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For simplicity let us now consider only a single zonal wave number m

and temporarily suppress the m superscripts and subscripts. Equations (7.1)-

(7.3) are

N.~~~~~~~~.No~~~~~~~~~t 4f 4c^
- A U l 8 F t E S g * e ) ^ 4 g 

An'

4 9f. ,+) 

/A-

1*

RV2I R,4(H~)~f 47*1 /AI)W /u*-IJ
-W

At

_ 2-4 P
I

W.IEp
- *'1-

where Fn, An, and Bn denote the expansion coefficients of the right sides

of (7.1)-(7.3). Collecting corresponding coefficients now gives us three

equations for n = m, m+l, .... , Nm-1, Nm:

-M (M Pl)/N -t )~ S0M1
aAV.* M#

= - F.a 

lte*) t )5 R. ftlV*+,7)*. R -.ds .w-')V, 4 .in 'w -4Oft I W-# *0 ,I.~~~~~~~~~~

(7.7a)

(7.7b)

Al " - -vt*+E e~zu_ (7.7c)
The an terms in (7.7a) and (7.7b) disappear for n = m. At n = Nm, the

S and R terms in (7.7a) and (7.7b) vanish. (We can simply define
n+1 n+ A

(~M for tx .) Elimination of Hm reduces this to



- q

(MRZ I)a 5 +*>+2) 5 - :()Zg/n -f ( Or ,/A(7.8a)

4d^+I'3 g + -,),, ,,,1 ? + b taso, Ru,,, A (7.8b)

Elimination of Sn is now convenient. If we define

X~~~~~~~~~~n ~ ~ ~ ~ ~ ~ I A
. _ {-O~+4) , b I mz- /

Azn J (7.9)

the result is an equation for Rn:

J. R +L + -' +- t

JK A-1 ANt A~1 2 
-~~ F~~-~ _ - [A~~ A8 +~ X X(7.10)

(Note that // ) vanishes for n = 1 and that bn vanishes for

n = m and for n > Nm ) . The matrix multiplying the column vector

Rn (n = m, m+l, ..., Nm) is symmetric, with entries only along the

principal diagonal and the upper and lower diagonals twice removed from

the main diagonal. (The latter feature reflects the fundamental separation

m
of Pn into even and odd polynomials.)n~~~~~~~~~~~~~~~~~~

Having solved for Rn from (7.10), we find Sn from (7.8b) and Hn from

(7.7c). These are the new iterates H and 5 . The right sides

of (7.2) and (7.3) can then be reevaluated with the new H and S, and the

process repeated.

An interesting question is the truncation limits to be assigned to m

and Nm in the expansions (7.4). These limits should be large enough toem
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O
include the information content in the original forcing field 7'A

but they must also be large enough to properly reflect the )' and 

distribution. Numerical experimentation will undoubtedly be necessary

to resolve this question.

The system of equations (7.10) can be solved directly as follows.

Consider separately the equations for n=--m, m+2, m+q, ... and the

independent set n = m+l, m+3, .... Each set can be written as

- .1., l- 4, , - (7.11a)

by using an obvious notation. We look for a solution of the form

4: + 3 (7.1lb)

of - - * -~ EB -Jtt * 

ap, + dkk .A 4&(7.11c)

Substituting into the general form (7.11c) produces the coefficient scheme

for k -- 2,..., k-l: 

Al = di- )n, A fit? 2 (7.13a)

Susiuigit tegnrlfr 7.1)poue h cefcetshm
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A, -
4- i - _ (7.13b)

(7.11a) produces the starting values for this scheme:

A : dL v B. * d'~ai (7.13c)
A E;1~~~~~

(7.13d)

Having computed A, ... AK-1 and B ... BK-i rwhich have used all

equations except (7.11e)], we determine by using (7.12) and (7.11e),

"OK- - Al k:- I 4ct t K-I )

a,.. Gi, - ,< K #W A(

to determine K :

K ag-I B,.,
'K A1 4 a A( 7.14)

~lc- 4 K-,

(7.12) then produces successively 4- 4 " 22

8. Initial field of divergence

The previous seven sections have been devoted to determining mutually

balanced fields of a streamfunction and geopotential. We now supplement

this with a quasi-geostrophic determination of an initial field of

divergence. The quasi-geostrophic system to be used is one of the simpler
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versions defined by Lorenz (Tellus, 1960, p. 364), in which the Coriolis

parameter is fully variable. (The following description is for the

entire globe, but a restriction to the Northern Hemisphere with the

usual symmetry conditions is easily obtained.)

The equations are written in the following nondimensional variables

and symbols:

p = pressure * (100 cb)

t = time x 2Q

V= horizontal gradient x a

= streamfunction . (20a2)

= variable geopotential * (4P2a2) (8.1)

Z = - in p

W = dZ/dt

T = standard atmosphere temperature

aX = velocity potential . (20a2 ), i.e.
ap

div = V(aX/ap)div
x = sine (latitude)

The equations consist of the vorticity equation,

72Xt~ ~ t ho -- &y V+V(,,,+i.7'+) =-As 82j~r SX (8.2)

the linear balance equation,

a'4S57%> = 72 9t )(8.3)..~V~ = Vt
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the simplified first law (combined with the hydrostatic equation),

+ s w = _ A~_;.;', . -stax at ~ SW~ # _ # - hx V = B(8.4)
ea et en'

the continuity equation,

, W = 72X
J~~ 57'X ~~~~(8.5)

the upper boundary condition at p =Ptop

VaX
=t ~ ° X q X ' O~J (8.6)

and the bottom boundary condition at p = 1:

W\ = -i _- . (8.7)
x-, R :

In (8.4), S is the static stability function

:S (Z) = HaNt 2 f
·/-z2.Ja = ~e.. ^ (8.8)

(S varies from about 0.01 to 0.03.) q is the heating rate per unit mass.

w in (8.7) is the vertical velocity (dimensional) at the bottom due to

orography and friction:

: 24 t (J$" ) -^:00,2_{t [ AX t I- V So; to D t 1 '(8.9)

z is the (dimensional) ground height and D is a length X 150 meters.

Equation (8.7) should really have a term__

--. :L-4 - =7r *e /0 Apt : Ads no, (8.10)
A r~~~~~~~~~~~~~~
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added to the left side. This term is negligible, however, except

possibly for the very longest horizontal and vertical wave lengths.

Our goal is to determine aX/ap. We shall assume that the vorticity

advection term A in (8.2), the temperature advection and heating term B

in (8.4), and the vertical velocity term C in (8.7) are known functions,

being determined from the balanced fields of *, i and (in the case of w)

from the known orographic height.

The bottom of the atmosphere will be set at the constant value p = 1

(100 cb), since this uniformity is required by the quasi-geostrophic

system. The pressure surfaces on which A and B are most directly computed

are set by the standard pressure surfaces on which p and 4 were computed

in the variational analysis (p = 1, .85, .7, .5, etc.). The logical

vertical structure of the variables, however, has both X and W at a series

of pressure levels running from p = 1 to Ptop, with the other variables

ai/It and ~/~t at interleaved values of p; this arrangement conflicts

with the vorticity advection term being specified at p = 1. We therefore

assume that A and B can be defined by vertical interpolation at a new

convenient set of pressure levels.

The convenient levels are defined by K uniform increments (A) in Z =

- in p:

Zk = (k-l)A ; k = 1, ..., K+1,

Z 1 = 0,

C8.ll)

ZK+ = n(Ptop) = KA =Zto p

t =Ztop
K

K here need not equal the K used in sections 1-7.
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At the Zk levels, the value of p is Pk:

; ~ ~~~~ ~ PA X D;/a ) = Z
e, ~~~- 4-~/a ~(8.12)/ -= e

Each Pk is a uniform fraction r2 of:the preceding Pk Pop itPk ~~~ ~~~~~~k-i ~top'i
should be noted, cannot equal zero in this system. The computational

convenience of this coordinate system is however great enough to accept

this limitation.

At these levels we define the unknowns Xk and Wk and (for k = 2, ..., K)

the known temperature term Bk and stability Sk). Intermediate levels are

defined at the average values of Z, and carry with them the unknowns

a/at, 0a/at and the known quantity A. The k subscript, is used as shown

in this diagram,,:
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RKI k+1 K+I M Wit

' -(iat), (}t)g ; 
IC A W -WKC; i t'K i~1(, W)( , k, 5

-~ z k+

(8.13)

- , -aWA, 8ASI,4 - ... .. C , S ,s

ilkA k I wVA ,; 84 ,S ;

air- AAsI Wii 61-1 ISA

XT, We; B2 ) a. ) A,__ .

zI Id W. C

p at the intermediate levels, for example, at the level

( la '/t)k }is denoted by

- X,'OL r~'.. .--& 

corresponding to

kt, it = c

(8.14)

zz

4oA t4111.4 Br g+,, SlkII

I 10

= '0% -t

=-/ e4, P.



-47-

Our first manipulation is to express (8.4) at k = 2, ..., K with

the obvious finite-difference equivalent of a(¢/Dt)DZ, apply the

operator A V2 to it, and then replace D/Dt by Dp/3t from (8.3). This

result is (k = 2, ..., K):

3 s kv )(I a ) v -Z[~~~~~~~~~~s .
; h k-I : (8.15a)

If we define the inverse Laplace operator by , so that (8.5) can be

expressed as

(8.15b)

the vorticity equation can be written (k = 1, ..., K)

*:~~~~ V2 @ -V+V k~k+1 Wh, -W - AS (9.15c)
atk

We now difference this in the vertical. At the same time we define new

variables, so that a symmetric system will emerge. The new variables are

\ = 5 -(;ft ( it -l, If (8.15d)

where vk and uk are functions only of k, and are to be determined for our

convenience. The result can be written (k = 2, ..., K)

f/ r '& I 7 VL' (816a)

:- S.'
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_ - 5 ( N~ 4_lA. (8.16b)

A convenient choice is

(8.17)

This leads to the two equations (k = 2, ..., K)

V.+vui 0 + V1V (W4 V BQ (8.18a)
Ss!

v Uk + zV+V/[_ VO+14 Y~'uk+ ~ s~.~~~+ T I ~~~~~~~~-. -.~. --

A{/ k-Ak.1~ ~(8.18b)

: ( Z.)('a A&-, .,

k in these equations runs from 2 to K. In (8.18b), the term Vk+1 for

k = K vanishes, since WK+ = 0. At the lower limit, the Vk l term for

k = 2 is

=v -As V t V, e| V !V W #(8.18c)

(Note the cancellation of the hitherto undefined number S1.) Since W1

is equal to the known quantity C in (8.7), we can remove this term to

the right side of (8.18b) when k = 2.
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The bracketed operator on Vk in (8.18b) is now a

diagonal matrix Dkg (k,Q=2,...,K)

-c/t -_ 0t 

o - di

O

O - - a)1

Ik - I..U) 4 5

It will have K-1 positive

Skj (k,j=2,...,K). /

symmetric tri-

(8.19)

2'

I

)9
L1 

eigenvalues Xj and orthonormal eigenvectors

The determinant of D is equalto sinh(KA/2) [A2 (K l).S S3..SKsinh(tA/

so that X does not equal zero. The eigenvectors of D do not have the large

amplitude variation 'with k that is present in the variational matrix, B
2kk

(Table I). In the special case of uniform Sk (i.e., an isothermal atmosphere),

the eigenvalues of D are C s ( a5 [ CA) e/- ~I )/ )l

and the eigenvectors are simply k= (2/K)asinft( )(f " )} /K]; Ja ,'':i
are simply & = (Z/K) J.

12Q ',t
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We expand the unknowns and the known right sides in these eigen-

vectors as follows:

-: AZ A A,
K

J

I " i( 2)a (8.20)

0 Ok = E ek--{Q) ths-,Ah)
jai~~~i

0 + G2j 'v./~CC

[The special term in a. comes from (8.18c).] We thereby arrive at K-1

pairs of two dimensional equations (j = ,...,K-):

V. -t-Ar. i
(8.21)a~~~~~~~~~e

J J J J
We solve these using spherical harmonics. Before we do so, we note

that the desired result is the field of (DX/3p)--the nondimensional

velocity potential--at the levels in diagram (8.13) corresponding to

aD/at. Using (8.14), (8.15b), (8.15d) and (8.17, we find, in succession,



-51-

'~~~~~~~~~~l fix53 ~a[ h)/ aW- I 2 I tW -- W/P ial4 ,1* -~~~~~~~~~~~~~

A -
L.

J VA<t .t (8.22)

_- _ I

It is therefore somewhat more convenient to expand v.
J

rather than

We now suppress the j subscript for convenience and expand as follows:

A. = S:_
j -401d _. - -

f Aft Y
= tj _ p r 1M

:,,do d). -,, s4~A c) Y #LJ (.>A
(8.23)

where Yn are the normalized spherical harmonics. By using relation

(7.5), we obtain two equations:

- [A. 4- )* a6*+( ~ t Al
.4 Ail {X#fi) 41*& * 7 441. 6.~ ~~ 4

where b is given by (7.9),
n

These can be collapsed into

1 A4r + MgA -, F- *q

I

el,4- A4 2 .+a
f

and we have suppressed the m superscript.

one equation for v:

"'z6'l" X,.+ A 4 .
(8.24)

.& I

&_~~AlI(A4+:t)

JIr

d4, - .1 4

( 4-.,
*I'

I_
=: a

V..
J

eslf

- 441- 
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This can be solved for vn by the method sketched at the end of section 7.

( V for use in (8.22) is then obtained by reversing (8.20):

K

w II6^. E 4r Cy) Y (
Al&2 J ^"^ ~(8.25)

The dimensional divergent velocity is then given by

IV 
Ld, i X , ._Wr~ (8.26)

A final remark concerns the part of 7#4r that is due to

friction--the 2gD V2i term in (8.9). The boundary treatment underlying

(8.9) assumes that frictional effects below p = 1 have caused a convergence

pattern in a boundary layer below p = 1. The divergence field given by

(8.26) does not include this boundary field, only the geostrophic response

to it above p = 1. Therefore, when v(div) from (8.26) is added to the

initial field of a primitive equation model (i.e., the goal of section 8),

the lowest layer or layers in that model should also have added to them

this implied low-level frictional convergence field. If Ap (cb) denotes

the (local) thickness of this bottom model layer, the added frictional

divergence in that layer should be

-7 fc"A t 
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where w is the same horizontal field as that used in (8.7). The

second factor allows roughly for the loss of the lower level part of

(8.26) in regions where psfc is significantly less than 100 cb.

V.Z


